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1.     Introduction 

 

Linear fractional programming (LFP) problems are a special type of non-

linear programming problems. In LFP, the objective function is a ratio of linear 

functions and the constrains are linear functions. In such models, under linear 

restriction, one of the extremal values of two linear form (function’s) ratio is 

found [3]. Many decision problems in economical and technical systems can be 

shown as models of Linear Fractional Programming [3, 7]. In real life situations, 

linear fractional models are applied more in decision making such as construction 

planning, economic and commercial planning, health care and hospital planning. 

An integer programming where all the variables are restricted to a value of 0 or 1 

is called 0-1 integer programming or boolean programming. A significant part of 

the LFP problems consists of Boolean Linear Fractional Programming problems 

(BLFP). The models of BLFP are used in the process of the construction of 

technical and economical systems, in planning of huge energy and production 

complexes, and in modelling computer supported management systems [2, 3, 7, 

10, 17]. Hence, improving new and fast solution methods for LFP problems, and 

designing effective algorithms are of great importance. 

In the literature, several approaches and strategy are suggested to solve LFP 

and BLFP problems. Bajalinov have recommended many methods to solve LFP 

problems [3]. Isbell and Marlow first identified an example of LFP problem and 

solved it by a sequence of linear programming problems [13]. Charnes and 

Cooper [6] considered variable transformation method to solve LFP and the 

updated objective function method were developed for solving the LFP problem 

by Bitran and Novaes [5]. Gilmore and Gomory [8], Martos [15], Swarup [22], 

mailto:kircalinecla@gmail.com
mailto:necla.kircali.gursoy@ege.edu.tr
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Wagner and Yuan[26], Pandey and Punnen[19] and Sharma et al. [21] solved the 

LFP problem by various types of solution procedures based on the simplex 

method developed by Dantzig [9]. Tantawy  proposed two different approaches 

namely; a feasible direction approach and a duality approach to solve the LFP 

problem [23, 24]. Mojtaba Borza et al.[16] solved the LFP problem with interval 

coefficients in objective function which is based on Charnes and Cooper 

technique [6]. Odior solved the LFP problem by algebraic approach which 

depends on the duality concept and the partial fractions [18]. Jayalakshmi and 

Pandian propose a new method namely, denominator objective restriction method 

for finding an optimal solution to LFP problems [14]. 

Addivite algorithm was developed for BLFP problems [4]. Puri and Swarp 

suggested the extreme point mathematical programming technique for solving 

BLFP as well as Integer Linear Fractional Programming (ILFP) [20]. Arefin’s 

purpose is to solve such types of problem using an enumerative algorithm. He has 

used additive algorithm of Balas [4] for solving a class of BLFP problems [1]. 

Recently, Tantawy have introduced a new procedure for solving the ILP problem 

based on conjugate gradiant projection method with the help of the spirit of 

Gomory cut [25]. 

As a result, several methods have been developed for Boolean Linear 

Fractional Programming problems. In order to solve this type of problems, one of 

the operations (coordinatewise operations) on fractions performed by the 

“numerator - numerator”, “denominator - denominator” principle is required. 

Taking this into consideration [11], operations done by this principle and denoted 

by the symbols ⨁, ⨂, ⨀ are handled, their properties are investigated, and 

geometric representation are given. In this paper, some inequalities for operations 

defined above are proved. These inequalities lay a mathematical foundation to 

solve LFP and BLFP problems, and calculate the guarantee value of the 

algorithms constructed for these problems. We developed a greedy algorithm for 

0-1 minimization Knapsack Problem and calculated guarantee value of this 

algorithm by using those inequalities [12]. 

 

1. Algebra of Fractions 

 

The Fractions algebra defined in [11] are based on coordinatewise operations. 

Definition 1. The operations denoted by ,   and  are defined on set 

         Θ ; ,
a

f f a b
b

 
   
 

 

as follows, where ( ,  ),      and  are binary, and  is a unary operation. 

    1 2 1 2
1 2

1 2 1 2

a a a a
f f

b b b b


  


  

    1 2 1 2
1 2

1 2 1 2

a a a a
f f

b b bb
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    1 1
2

1 1

a a
f

b b


 


   

for all   ,  1 2
1

1 2

2,
a a

f f
b b

   . 

Remark 1. We write ( )f g f g   . 

Definition 2. The value of every element of Θ  is called the module of the 

element; the module of f  is denoted by f . Given a natural number 𝑘, the 

numerals 
kp

kq
 and 

p

q
represent the same number, that is, their module is the same. 

For example, the numerals
1 2 3 4

, ,  ,  ,
3 6 9 12

 represent the same value, namely 
1

3
. 

Thus, 
1 2 3 4

0.3333
3 6 9 12
     

In other words, each element 
a

f
b

  of Θ corresponds to a vector  ,t b a  

in the plane  . Then module of f  is equal to the tangent of the angle that 

vector 𝑡 makes on positive direction with Ox-axis, i.e.,  f tan . 

Remark 2. Let Θ
m

f
n

  . Then, the module of 𝑓 is defined as 

,     0,  0

,    0,   0

m n
f

m n

  
 

  
 

Moreover,     0m n   if the module of 𝑓 is undefined. 

Theorem 1. [11] The system (Θ,  , , )   is an algebra on the set of real numbers. 

 

2. Some Basic Inequalities 

 

The following inequalities to be proved will be of main importance for the 

next sections. 

Proposition 1. For all 1 2, Θf f  , if 1 2f f , then 1 2 1 1 2 2f f f f f f     . 

Proof. Let 1 1f k  and 2 2f k , for 1 2
1

1 2

2,
a a

f f
b b

  . Then we can write 

1
1 1 1 1 1

1

2
2 2 2

2

2 2

a
f k a b k

b

a
f k a b k

b

   

   

 

1 2 1 2f f k k   . 

Now from 
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1 2 1 2 1 1 2 2
1 2

1 2 1 2 1 2

a a a a b k b k
f f

b b b b b b

 
   

 
  

 1 2 21 2 2 2
2 2

1 2 1 2

b b kb k b k
k f

b b b b


   

 
 

We get 

1 2 2f f f                                                (1) 

Also, from 

1 2 1 2 1 1 2 2
1 2

1 2 1 2 1 2

a a a a b k b k
f f

b b b b b b

 
   

 


 

  
 1 2 11 2 2 1

1 1

1 2 1 2

b b kb k b k
k f

b b b b


   

 
 

We obtain  

1 2 1f f f 
                                                  (2) 

Thus, the required inequalities follow from (1) and (2).    

Proposition 2.    1 1 2 2f f f f     holds for 1 2f f  and 

 , 0  . 

Proof. By proposition 1, we have 

   1 2 2 2f f f f                            (3)     

    1 1 1 2 .f f f f                             (4) 

Hence, the desired inequality follows from (3) and (4).     

Proposition 3. Let 1 2f f  and 1 2 2 1     for 
1 2 1 2, , ,      and 

1 2,f f  . Then  

             
       1 1 1 2 2 1 2 2f f f f        

holds. 

Proof. We have  

       
 

   

  

1 1 1 1 2 2 2 1 1 2 2 2
1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

1 2 2 1 1 2 1 2

1 1 1 2 2 1 2 2

k b k b k b k b
f f f f

b b b b

b b k k

b b b b

   
   

   

   

   

 
    

 

 


 

 

for 1
1 1 1 1 1

1

a
f k a k b

b
     and 2

2 2 2 2 2

2

a
f k a k b

b
    . Since 1 2 2 1    , 

1 2 2 1 0      and from 1 2k k , 1 2 0k k  . Hence, we get 

       1 1 1 2 2 1 2 2 0f f f f        

Proposition 4. Let f g  and f g    for , ,f g  . Then either f   

or g   if f   holds. 
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Proof. If we set 1f f  and 2f g  then by proposition 1, we get .f f g g    

Under the hypothesis f g   , we have two cases to consider. In the first 

case, we have .f f g g     Then we have f   while g  . In the 

second case, we have .f f g g     Then we get f   then g  . 

 

3. Inversion Properties 

 

In this section, we examine whether the elements of   defined on   

preserve the ordering under the operation  . Here, we set 

 

 

1 1 2 2

*

1 2

*

1 2 2

,

max ,

min ,

F F f F F f

F F F

f f f f

   



 

 

where 
1 2, ,F f f   and 

1 2 .F f f    

Theorem 2. If  21 2 2,ff f F  then 1 2 .F F   

Proof. Let 
1 2, , .

A a a a
F f f

B b b b


  


 Then we have 

                                        

1 1

2 2

1 2

A a a A a a
F F f

B b b B b b

A a A a
F F f

B b B b

a
f f

b

    
    

    


    







 

We denote 1 2F F  and 1 2f f  by F  and f , respectively. Then, 

1 2

A a a A a
F F F

B b b B b

  
    

  
                                   (5) 

1 2

a a a
f f f

b b b


    


                                       (6) 

In this case, to have  

. , 0F f                                  (7) 

It suffices to show 

, (8)
a a A a

b b B b

  
   

 

to prove the theorem. Rearranging the equations (5) and (6), we get 

          

  

1 2

A a a A a
F F F

B b b B b

AB Ab aB ab B a b a AB Ab A b aB ab a b

B b b B b
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2

A a
a b

B bB a b a A b a b

B b b B b B b b

a F b

B b b


  

      
 

      

  


  

 

and  

                       

1 2

2

(b b)

.

a a a ab b a ab a b
f f f

b b b b

a
a b

a f bb

b b b b

      
     

   

  
  

 
   

 

If we write 2 2

2

. . ,
a F b a f bb b

F
a f b B b b b b

     
 

     
 then we can express 

2

2

. . . (9)
a F b b b

F f
a f b B b b

   
  

    

 

Then if we show that  

 

2

2

. 0 (10)
a F b b b

a f b B b b

   


    
 

the inequality (9) becomes the same with (7). We have 0b b   since the 

elements of denominator of linear fractional function come from  . In this case 

in order for (10) to be satisfied, it will suffice that 

2

2

0 (11)
a F b

a f b

  


  
 

Now, (11) holds if and only if one the following conditions satisfied: 

(i)  2 2 2max ,
a A a

F f F
b B b

 
  

 
 

(ii)  2 2 2min ,
a a

F f f
b b


  


 

But the conditions (i) and (ii) mean that (8) is satisfied.   

Corollary 1. If  21 2 2,ff f F , then  21 1 1,ff f F . 

Proof. By using Theorem 2, if  21 2 2,ff f F  then 1 2F F . If  

 21 2 2,ff f F  then two cases are in question: 

(i) If 2f f  , then 1f f  , since 1 2f f . 

(ii) If 2f F  , then 1f F  , since 1 2F F f  . 

Hence, we get  1 1,f f F  .        

Corollary 2.  21 1 1,ff f F  or  21 2 2,ff f F  then  2

* *

1 ,ff f F . 
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Proof. It follows from Theorem 2 and Corollary 1.      

Definition 3. The interval corresponding to    
1 2

* *

, , ,f fM f F     is 

called Monotony Domain and the interval remaining outside of it is called 

Inversion Domain, and is denoted by  
1 2

* *

, ,f fU f F . 

As we see from this definition, if 
1 2f f  then 

1 2F F , where 1 1F F f   

and 2 2F F f  . In the Inversion domain we have exactly the contrary case, that 

is, if 
1 2f f , then 

1 2F F . 

Definition 4. If 
21 1f f f , then *

1 2f f f   and if 1 2b b  then 
1 2F F , 

where 1 2
1 2

1 2

,
a a

f f
b b

  . In this case we say that the point 
*f  is a multivalent 

point. 

Definition 5. If 21 1f f F , then *

1 2F F F  . Then in this case the point 

*F  is called an Invariant point. 

 

4. The Sums Under The Different Strategies 

 

In this section, we will deal with three distinct strategies with respect to the 

sum and we will compare them, and finally we will examine whether the sums are 

equal under local and global criteria. 

n  cortege is defined as  

 1, 1,2,..., , , 1,...,n 1n i n n i if i w w n f f i       . 

L

KF  defined by 

                              1

k
L

K i
i

F f


   

denotes Local criterium according to the sums where i nf  . This means that L

KF  

is coordinatewise sum of the first k elements ordered by their module. 

 1,2,...,L

kw k  denotes the ordered of first k index set.  

Given 

              

  
 

 

1 1

1

1

1 1

,

max ,

1 ,

.

G
n k

G

G G G G

k k j k j k i
i w

G

G G G

w

G

k k k k j

F f

F F f F f F f

w

w w j F F f




 



    



   

 

G

kF  denotes the sum according to global criterium. 
1

G

kF 
 inserts automatically G

kF  

into 
1

G

kF 
 and chooses among the remaining elements as (k 1)th  element 

jf  

which makes the coordinatewise sum maximum. 
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*

kF  chooses k if  fractions which make coordinatewise sum maximum if k n . 
*

kw  is taken to be the set if indicates of if  chosen from *

kF . 

*

kF  is defined as 

                  
 *

* max .
k n kk

k i i
w w i wi w

F f f
 

     

The sums may not always give maximal values according to Global and Local 

criteria. We give now a theorem that indicates a condition under which the sums 

are equal according to local and global criteria. 

Theorem 3. If 
i jji f fff U  for all , ni j w , then *G L

k k kw w w   for every k. 

Proof. The proof of G L

k kw w  follows from the algorithmic construction of sets 
G

kw  and L

kw  when conditions of the theorem are considered. We prove *G

k kw w  

by induction. Clearly *

1 1

Gw w  holds for 1k  . 

Assume that theorem holds for 1k m  , that is, *

1 1

G

m mw w  . Suppose that 

*G

m mw w  does not hold. Then there exists 
mw  such that 

G
m m

i i
i w i w

f f
 

   . Then we 

have two cases G

m mw w   and .G

m mw w   

Case 1: Let G

m mw w  . Then 

1 1

(12)
G G
m m

i s i p
i w i w

f f f f
  

   
       

   
 

,for some 
mp w   and 

ms w  . By the definition of 
1

G

kw 
, we have 

1 1

(13)
G G G
m m m

G

i p i m i m
i w i w i w

f f f f f F
   

   
          

   
 

Using Proposition 1 and (13), we get  

1 1

1 1

1

1 1

1

(14)

G G
m m m

G G
m mm m

G G
mm m

G G
m m

i t i p
t w i w i w

i t i p
t w t wi w i w

G

t t i m
t wi w i w

i i m
i w i w

f f f f

f f f f

m f f f F

m f f F

 

 



 

  

  

 


 

    
             

                  

                 

   
       
   

. (15)G

 

From (14) and (15) it follows that  

1. (16)G G

m mF F   

The following inequality is clear from Proposition 4 and (16) 

(17)
G

m m

t i
t w i w

f f
 

    

But (17) is contradicts assumption (12). Therefore, the theorem is proved for this 
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case. 

Case 2. Let G

m mw w  . For the sake of simplicity, consider only the case 

3m  . We can write such a proof for all .m n   

Let      3 1 2 3 3 2, , , 1,2,3 , 1,2 .G Gw i i i w w    Without loss of generality, let 

1 1i   i.e., 
3 2 21,Gw w i p    and 

3 2
2 2
G Gi i i i

i w i w

f f f f
 

   
       

   
  

By the definition of 
1

G

kw 
, we have 

2
2 2 3

3 3 .
G G G

G

i i i i
i w i w i w

f f f f f F
  

   
          

   
 

Using associativitiy and commutativity properties of   we get, by developing 

(15), 

       
2 3 2 31 2 2 1 1 2 1 2i i i if f f f f f f f f f f f                     

  

Using Proposition 1 we obtain from inequality above 

  
     

2 3 21 2 1 2 1 2 (18)i i if f f f f f f f f              

From the condition 
2 332 f fff U  in the theorem it follows that we have 

2 31 1 2 3 . (19)i if f f f f f      

Taking in the consideration (18) and (19) we obtain 

2 31 1 2 3i if f f f f f     , which is in contradiction with (19).  

 

5. Some Propositions 

 

   It is important to know relation between G

kF  defined according to global 

strategy and L

kF  defined by local strategy. We have already proved 
2 2

G LF F  

and 
3 3 .G LF F  Throughout this section we set .i

i

i

a
f

b
   

Proposition 5. If we define 
G
k

G

k i

i w

B b


   and 
L
k

L

k i

i w

B b


   for each k n , then 

.G L

k kB B   

Proof. We proceed by induction. The result holds for 1k  , since 

1 1

1 1
G L

G L

i i

i w i w

B b b B
 

      

where 
1 11 .G Lw w    

Assume that we have 
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1 2

1 2

...

...

m
G
m

G
m

G

m t t t t

t w

L

m t m

t w

B b b b b

B b b b b





    

    




  

For k m , and prove the proposition for 1.k m    

Now according to local and global strategies we have by definition of sum 

1 1

L L

m m mB B b     

and 

11 .
m

G

m m iB B b
     

There are three cases to consider. 

(i) If 1 1mi m   , then 
1 1.

G L

m mB B   Indeed, by induction hypothesis, it 

sufficies to add 1m  on both sides. 

(ii) If 1 1mi m   , then there exists G

mt w  such that 1 .mi t   Then .L

t mi w  

If 1,ti m   then there is G

ms w  such that ti s , and in this case 

.L

s mi w  When 1,si m   clearly we have it is obvious that 

t i tt
ti f ff Uf   and .

s i ss
si f ff Uf  In this case, 

si sb b  and we 

conclude that 
1 1.

G L

m mB B    

(iii) If 1 1mi m   , then 
1 11

1 ;
im mm

m fi ff Uf
    hence 

11 ,
mm ib b
   and we 

get 
1 1.

G L

m mB B   

Proposition 6. We have G

k kF f  and G

k kB b , for every k n . 

Proof. The part G

k kB b  is obvious. For the proof of  G

k kF f , we employ 

induction ok k . For 1,k   according to global strategy by definition of sum we 

have 
1 1

GF f , hence 
1 1 .GF f   

Assume that G

m mF f  for k m  and prove that 
1 1

G

m mF f   for 1k m  . 

There is a sf  such that 
1 .G

m m sF F f     

(a) If 1,s m   then by Proposition 1, we have 
1 1 .G

m mF f    

(b) If 1,s m   then 
*1 .mm w   Assume, to the contrary that  

1 (20)G

m s mF f f    

Now by induction, we have 

1 (21)G

m m mF f f    

and  

1 1 . (22)G

m m mF f f  
 
 

Therefore, we get 
1

G G

m m m sF f f f    from (21) and (22). But this contradicts 

(20), thus we obtain the inequality 
1 .G

m s mF f f     
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Proposition 7. We have 1

G G

k kF F   and 1,
G G

k kB B   for every ;k n  that is, 

 
1

n
G

k k
F


 is monotone decreasing while  

1

n
G

k k
B


 is monotone increasing. 

Proof. Clearly 1

G G

k kB B   holds. We prove the first part by induction on k. 

For k=1 there is sf  such that 1 1 2 1, .G G

sF f F f f    Since 1 1 sf f f   by 

Proposition 1, we then have 1 2.
GF F Assume that 1

G G

m mF F   holds for k=m and 

prove 1 2 .G G

m mF F   

In other words, if we show that ,G

m sF f  then G G

m m sF F f   will 

follow from Proposition 1. This means that we thus get 1 .G G

m mF F   To prove 

G

m sF f  we consider the following. 

(i) Let s m . Then by Proposition 6 we find .G

m m sF f f   

(ii) For s m  we have .G

m sF f  Define mF  by  

1 (23)G

m m sF F f   

From our assumption we have 

1 . (24)G G

m mF F   

Now 

1

G G

m s mF f F    

Follows from (23), (24) and Proposition 1. This is .G

m mF F  But it contradicts 

with 
G

mF  to be maximum. Therefore, we find .G

m sF f      

Proposition 8. If    max min
kk i wi w

i i


  for all ,k k nw w w  then .
k k

i i
i w i w

f f
 
     

Proof. Let   1max
ki w

i i


  and   2min .
ki w

i i


  By Proposition 6 we get  

1
. (25)

k

i i
i w

f f

   

From Proposition 6 again, we find  

2
. (26)

k

i i
i w

f f

   

Then we see by the hypothesis that    max min
kk i wi w

i i


 , 
1 2

.i if f  The desired 

inequality follows from (25) and (26).       

 

6. Conclusion 

 

In this work, we prove that, in fractions algebra formed by coordinatewise 

operations defined on fractions, the sum operation possesses inversion property in 

some cases. The inequality condition of sums is investigated according to 

different strategies. Then taking into account this condition, we prove some 
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inequalities which allow to make use the difference of sums compared by 

different strategies from the maximal sum. These inequalities will be use to 

evaluate solutions of LFP found by heuristic algorithms based on suggested 

strategies above.  
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